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Abstract. This paper contains a new convergence analysis for the Lewis and Torczon GPS
class of pattern search methods for linearly constrained optimization. The analysis is motivated
by the desire to understand the behavior of the algorithm under hypotheses more consistent with
properties satisfied in practice for a class of problems, discussed at various points in the paper, for
which these methods are successful. Specifically, even if the objective function is discontinuous or
extended valued, the methods find a limit point with some minimizing properties. Simple examples
show that the strength of the optimality conditions at a limit point does not depend only on the
algorithm, but also on the directions it uses, and on the smoothness of the objective at the limit
point in question. This contribution of this paper is to provide a simple convergence analysis that
supplies detail about the relation of optimality conditions to objective smoothness properties, and
the defining directions for the algorithm, and it gives older results as easy corollaries.
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1. Introduction. Generalized pattern search (GPS) algorithms were defined
and analyzed by Torczon [28] for derivative-free unconstrained optimization on con-
tinuously differentiable functions using positive spanning directions [24]. Lewis and
Torczon showed that if the objective is continuously differentiable and if the set of
directions that define the local search is chosen properly, then the GPS framework
and convergence theory extends to bound constrained optimization [23] and more
generally for problems with a finite number of linear constraints [25] by the appealing
“barrier” strategy of declaring any infeasible point to be unacceptable as a next iter-
ate. Our purpose here is to provide a new simpler unified analysis for the methods in
[28, 23, 25], and to help elucidate the relationship between the algorithm, the search
directions, and the local smoothness properties of the objective at certain specified
limit points of the algorithm.

The optimization problem considered in this paper is:

min
x∈Ω

f(x) , where f : <n → <∪ {∞} .(1.1)

We assume as in [25] that Ω = {x ∈ <n : ` ≤ Ax ≤ u} where A ∈ Qm×n is a rational
matrix, `, u ∈ {< ∪ {±∞}}m and ` < u. The way of handling the linear constraints
here, and indeed the entire algorithm, is the same as in [23] and [25]; but a key part
of the analysis here is more general and much shorter.

We believe that the primary niche of GPS methods within nonlinear optimization
stems from their effectiveness when used with surrogates [5, 6] for what are generally
expensive objective function evaluations. Certainly our interest in them is based on
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success using this approach on some interesting engineering design problems. This
motivation influences the way we like to view the methods, as well as what we are
willing to assume about the objective function f to do the analysis. We will give
contextual discussions of several ways in which GPS methods fill this niche - the first
just below.

For many applied problems, a call to the subroutine that evaluates f(x) may
result unexpectedly in no value being returned, which we model as f(x) = ∞. This
important issue is discussed in detail in [5], where GPS is effective on a helicopter ro-
tor design example for which no value is returned roughly 66% of the time. The issue
is discussed in a different algorithmic and application context in [7, 8]. The point is
that because this happens in many applications, we are precluded from making global
smoothness assumptions, including even continuity. We are not the first to observe
that GPS can work well on nonsmooth problems. Hough, Kolda and Torczon note in
an earlier version of [20] that “while the theory for pattern search assumes that f is
continuously differentiable, pattern search methods can be effective on nondifferen-
tiable (and even discontinuous) problems precisely because they do not explicitly rely
on derivative information to drive the search.”

We view the barrier approach as applying the algorithm not to f , but to the
barrier function fΩ = f+ψΩ, where ψΩ is the indicator function for Ω. It is zero on Ω
and ∞ elsewhere. Clearly then, we do not evaluate f(x) if x is infeasible because we
know that its value is immaterial since the algorithm works with fΩ, and the value of
fΩ is +∞ on all points that are either infeasible or at which f is declared to be +∞:

fΩ(x) =
{
f(x) if x ∈ Ω
∞ else.

The reason that we treat together all the methods in [28, 23, 25] that use the barrier
approach is that by viewing them as the same algorithm applied to fΩ, we can treat
them by corollaries of a single result, Theorem 3.7, that allows for extended values
and other nonsmooth behavior. Our approach is first to identify a class of promising
limit points produced by GPS applied to extended-valued discontinuous functions
like fΩ. If f is lower semicontinuous at such a limit point, we can make a weak
optimality statement. Then we apply the Clarke calculus [9] locally to f at such a
point to relate progressively stronger optimality conditions to progressively stronger
local smoothness assumptions at the limit point.

Thus, the structure of our results will be that at some limit point whose existence
is asserted independent of certain assumptions, we make those additional assumptions
to draw stronger conclusions. This is standard for Newton or quasi-Newton methods
([27], e.g., Theorem 8.6 pg 216 or virtually all of [22]), but it has not been the norm
for direct search methods.

Specifically, we observe without assuming any smoothness that there is a con-
vergent subsequence of the sequence {xk} of iterates produced by the algorithm.
Obviously if {f(xk)} is bounded below, then limk f(xk) is finite since the sequence is
nonincreasing. Thus, if f is lower semicontinuous at any limit point x̄ of the sequence
of iterates, then f(x̄) ≤ lim infk f(xk) = limk f(xk). Our analysis is of interest for the
heat intercept design problem we give in [21] where f is not continuous at one of the
limit points generated, but a plot suggests that it is lower semicontinuous. In a case
where f(xk) = ∞, we believe that an optimization code should notify the user that
it has found an interesting point at which the subroutine that evaluates f should be
carefully examined in hopes of obtaining a value, which may correspond to a good
design.
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Again without any smoothness assumptions, we show that there is a limit point
x̂ of a subsequence of {xk} consisting of iterates that are local optimizers of f(x) to a
progressively finer resolution of the current mesh at those iterates (a formal definition
of the mesh is given in Section 2). The directional tests that led GPS to refine the
mesh at the terms of the subsequence are exactly that difference quotients for the
Clarke generalized directional at x̂ are nonnegative. If the Clarke derivatives exist at
x̂, as they will if f is locally Lipschitz at x̂, then these nonnegative difference quotients
pass through the limit to be nonnegative Clarke derivatives in the directions used.

Nonnegative directional derivatives in a set of directions are necessary conditions
for optimality, but they are not the usual first order conditions. To get those, we
assume in addition that the generalized gradient of f is a singleton. This extra
smoothness causes the above directional optimality conditions to hold for all directions
in the positive cone of those directions, and this together with the right choice of
directions leads to the familiar first order optimality conditions. We give examples
that supplement those in [1] and show that our results are sharp in that they predict
the behavior of the algorithm.

We believe that it is useful to understand how the algorithm behaves in such
cases because there will generally be no way of knowing beforehand whether the
“blackbox” function given to the algorithm is at all smooth, and our analysis describe
the minimal optimality conditions that can be guaranteed. We obtain as immediate
corollaries earlier results that assumed global continuous differentiability.

The remainder of the paper is organized as follows: in the next section, we will
give a brief description of the GPS algorithm class. We adhere to a slightly different,
but equivalent version of the Lewis and Torczon algorithm, because our major interest
in these algorithms is for problems where they are used with inexpensive surrogates for
an expensive function. To see how easily and effectively surrogates can be incorporated
into this version of GPS, see [5, 6]. In Section 3, we present the assumptions together
with a discussion of our local smoothness conditions, then we give the key result, some
easy corollaries for unconstrained problems together with a discussion of these results
before we go on to the results for the linear constraints. Section 4 is devoted to some
concluding remarks.

2. Generalized pattern search algorithms. Generalized pattern search algo-
rithms for unconstrained or linearly constrained minimization generate a sequence of
iterates {xk} in <n with non-increasing objective function values. Because of our in-
terest in surrogate-based optimization, we like to view each iteration as being divided
into two phases: an optional search and a local poll, defined next.

In the search step, the barrier objective function fΩ is evaluated at a finite
number of points on a mesh (a discrete subset of <n defined below whose fineness
is parameterized by the mesh size parameter ∆k > 0) to try to find one that yields
a lower objective function value than the incumbent. Any strategy may be used to
select the mesh points that are candidates to replace the incumbent, as long as only
finitely many points (including none) are selected.

This is a key point. The search step accommodates whatever heuristics the
user was already using to attack their problem using surrogates. One might do some
random search on the mesh using the surrogate, or, as in the Boeing Design Ex-
plorer software [4], one might apply SQP to the surrogate problem and then move
the solution to a nearby mesh point to choose the candidates at which to evaluate the
expensive objective function in hopes of obtaining a better next iterate. Coope and
Price [11] offer a possibility for a related framework that does not require pushing a
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surrogate solution to the mesh for it to become an acceptable trial point. It would be
interesting to blend the analysis here with their related methods.

On the other hand, the freedom of the search step is definitely a theoretical
liability. In [1] and here, there are examples of nonempty searches that spoil chances
for the algorithm to find KKT points and of empty searches that mire the algorithm in
at a poor point when a naive random selection from the current mesh in the search
would generally lead to success. Regardless, this freedom must be retained. Indeed,
for the Boeing example [5, 6], the algorithm with surrogates is much more efficient
than Serafini’s implementation of the Dennis-Torczon MDS/PDS algorithm [13]. This
is not to disparage the MDS algorithm, which is very robust on that example.

Below, we will offer terminology consistent with Coope and Price [12] to replace
the usual ”successful/unsuccessful” terminology in the GPS literature. The original
terminology was adequate until it was recognized that the ”unsuccessful” iterations
were the important ones because they produce mesh local optimizers, while successful
iterations produce only improved mesh points, which we define now.

When the incumbent is replaced, i.e., when fΩ(xk+1) < fΩ(xk), or equivalently
when f(xk+1) < f(xk), then xk+1 is said to be an improved mesh point. When the
search step fails in providing an improved mesh point, the poll step is invoked. This
second step consists of evaluating the barrier objective function at the neighboring
mesh points to see if a lower function value can be found there. A crucial practical
feature supported by the theory here, but originally in Torczon [28], is that as soon
as an improved mesh point is found, polling can stop immediately.

When the poll step fails in providing an improved mesh point, then the current
incumbent solution is said to be a mesh local optimizer (i.e., its objective function
value is less than or equal to that of neighboring mesh points). The algorithm then
refines the mesh by setting the mesh size parameter

∆k+1 = τwk∆k(2.1)

for 0 < τwk < 1, where τ > 1 is a rational number that remains constant over all
iterations, and wk ≤ −1 is an integer bounded below by the constant w− ≤ −1.

If either the search or poll step produces an improved mesh point, then the
new point xk+1 6= xk has a strictly lower objective function value (there is no suffi-
cient decrease condition, another crucial practical feature supported by the theory in
Torczon [28]) and here, the mesh size parameter is kept the same or is increased to
carry out far reaching and inexpensive (if surrogates are used) search steps, and the
process is reiterated. The coarsening of the mesh follows the rule

∆k+1 = τwk∆k(2.2)

where τ > 1 is defined above and wk ≥ 0 is an integer bounded above by w+ ≥ 0. Our
experience with surrogate-based search steps [5], [6] is that a great deal of progress
can be made with few function values, and at least n + 1 function evaluations are
needed only to show local mesh optimality, which indicates that the mesh needs to
be refined (see [24] for defining a minimal number of polling directions).

By modifying the mesh size parameters as above, it follows that for any k ≥ 0,
there exists an integer rk ∈ Z such that

∆k = τ rk∆0.(2.3)

The basic ingredient in the definition of the mesh is a set of positive spanning
directions D in <n (more precisely, nonnegative linear combinations of the elements
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• Initialization:
Let x0 be such that fΩ(x0) is finite, and let M0 be the mesh on <n defined
by ∆0 > 0, and letD0 and x0 be given (see equation (2.4)). Set the iteration
counter k to 0.
• Search and poll step:

Perform the search and possibly the poll steps (or only part of them)
until an improved mesh point xk+1 with the lowest so far fΩ value is found
on the mesh Mk defined by equation (2.4).

– Optional search: Evaluate fΩ on a finite subset of trial points on
the mesh Mk defined by equation (2.4) (the strategy that gives the set
of points is usually provided by the user; it must be finite and the set
can be empty).

– Local poll: Evaluate fΩ on the poll set defined in equation (2.5).
• Parameter update:

If the search or the poll step produced an improved mesh point, i.e., a
feasible iterate xk+1 ∈ Mk ∩ Ω for which fΩ(xk+1) < fΩ(xk), then update
∆k+1 ≥ ∆k according to rule (2.2).
Otherwise, fΩ(xk) ≤ fΩ(xk +∆kd) for all d ∈ Dk and so xk is a mesh local
optimizer. Set xk+1 = xk, update ∆k+1 < ∆k according to rule (2.1).
Increase k ← k + 1 and go back to the search and poll step.

Fig. 2.1. A basic GPS algorithm

of the set D span <n). There is great freedom in choosing these directions, only
the following additional rule needs to be respected: each direction dj ∈ D (for j =
1, 2, . . . , |D|) is the product Gz̄j of the non-singular generating matrix G ∈ <n×n

by an integer vector z̄j ∈ Zn. Note that the same generating matrix is used for
all directions. For convenience, the set D is also viewed as a real n × |D| matrix.
Similarly, we denote the matrix whose columns are z̄j , for j = 1, 2, . . . , |D| by Z̄; we
can therefore write D = GZ̄. At iteration k, the mesh is centered around the current
iterate xk ∈ <n and its fineness is parameterized through the mesh size parameter
∆k as follows

Mk = {xk + ∆kDz : z ∈ Z |D|+ },(2.4)

where Z+ is the set of nonnegative integers. This way of describing the mesh differs
from [28, 23, 25] because we think it easier to understand and work with.

At each iteration, some positive spanning matrix Dk composed of columns of D
is used to construct the poll set. We write Dk ⊆ D to signify that the matrix Dk is
composed of columns of D. The poll set is composed of mesh points neighboring the
current iterate xk in the directions of the columns of Dk:

Poll set: {xk + ∆kd : d ∈ Dk}.(2.5)

Rules for selecting Dk may depend on the user’s dynamic intervention during the
current run, or, for example, on the iteration number or the current iterate, i.e.,
Dk = D(k, xk) ⊆ D.

The algorithm is stated formally in Figure 2.1.
The search strategy is the key to effectiveness. In practice it allows the use of

heuristic and surrogate methods to explore the domain of the variables. For example,
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one might apply a few generations of a genetic algorithm on the mesh to fΩ or to
a surrogate. The convergence analysis is independent of the search step, provided
that it is finite and returns a point (or points) on the mesh. The poll step applied to
fΩ, as we will see, guarantees that the limit point provided by the algorithm satisfies
optimality conditions whose strength depends on the local smoothness of f at the
limit point.

3. Convergence analysis. Theorem 3.7 is our main result. It and Theorem
3.1 make no special assumptions about the crucial relationship between the directions
D and the feasible region Ω. This means that they apply to quite general uses of
GPS (see also the remark following Theorem 3.14), but without a connection between
Ω and D, the resulting constrained optimality conditions are weak even when f is
smooth. Its immediate corollary (Theorem 3.9) is the strongest result we expect for
stationarity in the unconstrained case (see [1] for supporting examples).

Since one of the objectives of the paper is to simplify the convergence analysis of
GPS, we include the proofs of all the results leading to our main one, even if some of
them essentially can be found in previous work modulo the slightly different way of
defining the mesh (we indicate the appropriate references).

3.1. Assumptions and smoothness requirements. We make the standard
assumption that all iterates produced by GPS lie in a compact set (see [2, 3, 10, 11,
12, 15, 16, 17]). A sufficient condition for this to hold is that the level set L(x0) =
{x ∈ Ω : f(x) ≤ f(x0)} is compact. We cannot assume that L(x0) is compact because
we allow discontinuities and even f(x) = ∞, and so we do not know that L(x0) is
closed. However we can assume that L(x0) is bounded so that its closure is compact.

Whatever we assume to ensure that the iterates are in a compact set, this already
implies that there are convergent subsequences of the iteration sequence. This is
enough to say that if f is lower semicontinuous at such a limit point x̄, then f(x̄) ≤
limk f(xk) for the entire iteration sequence. Of course, f can be infinite arbitrarily
near a point where it is lower semicontinuous, and so we can say nothing about any
derivatives at such an x̄. For that, we will consider an interesting set of subsequences
identified by the algorithm. Specifically, we will be concerned here, as in [2, 11, 12]
with the iterates xk that are mesh local optimizers for meshes that get infinitely fine.
We will use x̄ to denote generic limit points of the sequence of iterates, and x̂ for
limit points of mesh local optimizers for meshes that get infinitely fine. It is only at
mesh local optimizers that ∆k is reduced. This is not to say that other subsequences
may not exhibit interesting first order behavior, but we can prove that these do,
and that is more specific. The analysis is simpler if we assume that the mesh size
is never coarsened, since obviously then the meshes become infinitely fine for every
sequence of mesh local optimizers. However, we will not use this assumption since
mesh coarsening can lead more rapidly to a more global solution.

To summarize, the convergence analysis provided below relies only on the follow-
ing assumptions, and some results are stated in terms of the set of directions D.
A1: A function fΩ = f + ψΩ : < → < ∪ {+∞} is available.
A2: The constraint matrix A is rational.
A3: All iterates {xk} produced by the algorithm lie in a compact set.

This allows us to prove the following result with an immediate, but rather strange
implication - stationary points are the least interesting limit points GPS produces.
Of course, if all the limit points are stationary points, then all are equally interesting.

6



Theorem 3.1. Under assumptions A1 and A3, there exists at least one limit
point of the iteration sequence {xk}. If f is lower semicontinuous at such a limit
point x̄, then limk f(xk) exists and is greater than or equal to f(x̄). If f is continuous
at every limit point of {xk}, then every limit point has the same function value.

Proof. Since f is lower semicontinuous at x̄, we know that for any subsequence
{xk}k∈K of the iteration sequence that converges to x̄, lim infk∈K f(xk) ≥ f(x̄),
which is finite. But since the subsequence of function values is a subsequence of a
nonincreasing sequence, they have the same lim inf. Thus, the entire sequence is also
bounded below by f(x̄), and so it converges.

To prove more, we will need to assume more. In addition to A1-A3, previous work
on pattern search algorithms assumes continuous differentiability of the function f on
a neighborhood of the level set L(x0) = {x ∈ Ω : f(x) ≤ f(x0)} ([2, 23, 25, 28, 11, 12]).
In the unconstrained case, Torczon [28] shows that for GPS there exists a limit point
x̄ satisfying ∇f(x̄) = 0, and our [2] shows the same result for every limit point x̂ of
any sequence of mesh local optimizers for which limk ∆k = 0. Note that since every
limit point of the GPS sequence is a point of continuity in this case, nonstationary
limit points, whose possible existence is shown in [1], are very interesting because with
the right search step, or the right choice of directions, one can proceed to a feasible
point with a better value of f . Our analysis below uses a weaker assumption at such
a limit point (strict differentiability1 of f at x̂ instead of continuous differentiability
on L(x0)).

First we easily show (under no smoothness assumptions) the existence of at least
one limit point of a subsequence of mesh local optimizers on meshes that get infinitely
fine. Then, for those limit points where f is strictly differentiable, we show that the
gradient is zero. To avoid confusion about the relative strength of assuming in the
context of GPS that f is locally Lipschitz, or strictly differentiable at a point, or
continuously differentiable, we will provide examples following Theorems 3.7 and 3.9
for which those results apply and earlier results do not. The original proof of the mesh
refinement results were first given in [28] with a different description of the meshes.

We now proceed with some results on the behavior of the mesh and mesh size
parameter. These results do not depend at all on the smoothness of fΩ; they use just
the definition of the algorithm and integrality of the matrix Z used to construct the set
of directions D. For a different framework, Coope and Price relax the conditions on
the mesh but they assume that the meshes become infinitely fine. This is an interesting
tradeoff that puts the burden for ensuring that the meshes become infinitely fine onto
the implementation, but allows for search points off the mesh and more freedom in
the definition of the meshes.

3.2. Mesh refinement. The main result of this section is that there is a sub-
sequence of mesh local optimizers for which the mesh size parameter goes to zero.
The first lemma shows that for each mesh Mk, the minimal distance over all pairs of
distinct mesh points is bounded below by the mesh size parameter ∆k times a scalar.

1The function f is said to be strictly differentiable at x if for all v, lim
y→x,t↓0

f(y + tv)− f(y)

t
=

∇f(x)T v (see Clarke [9]).
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In the Euclidean norm, the proof involves the smallest singular value of G [28].
Lemma 3.2. For any integer k ≥ 0, and any norm for which any nonzero integer

vector has norm at least 1,

min
u 6=v∈Mk

‖u− v‖ ≥ ∆k

‖G−1‖
.

Proof. Using equation (2.4), we let u = xk +∆kDzu and v = xk +∆kDzv be two
distinct points on Mk with both zu and zv in Z |D|+ . Then

‖u− v‖ = ∆k‖D(zu − zv)‖ = ∆k‖GZ̄(zu − zv)‖ ≥ ∆k
‖Z̄(zu − zv)‖
‖G−1‖

≥ ∆k

‖G−1‖
.

The last part of the inequality is due to the fact that Z̄(zu − zv) is a nonzero integer
vector, thus its norm is greater than or equal to one.

The previous result would not be true if the directions of D were not constructed
through an integral matrix Z. For example, in <1 positive integer combinations of
the columns of D = [−1,+π] are a dense subset of the real line. Indeed, there are no
Z = [z1, z2] with z1, z2 ∈ Z1 and G ∈ <1 such that D = GZ.

The next lemma shows that the mesh size parameters generated by the algorithm
are bounded above (it is similar to a result in [2] for categorical variables).

Lemma 3.3. There exists a positive integer r+ such that ∆k ≤ ∆0τ
r+

for any
integer k ≥ 0.

Proof. Using assumption A3, we let X be a compact set in <n that contains all
iterates, and denote its diameter by γ (i.e., the maximal distance between two of its
points). If ∆k > γ ·‖G−1‖, then Lemma 3.2 with (v = xk) ensures that any trial point
u ∈Mk different from xk would have been outside of X . But since no iterate is outside
X , it follows that at any iteration whose mesh size parameter exceeded γ · ‖G−1‖, the
iterate xk is a mesh local optimizer. Thus ∆k is bounded above by γ · ‖G−1‖τw+

and
the result follows by setting r+ large enough so that ∆0τ

r+ ≥ γ · ‖G−1‖τw+
.

The proof of the next result is identical in spirit to that of the same result in
Torczon [28] and adapted in [2] for categorical variables.

Proposition 3.4. The mesh size parameters satisfy lim inf
k→+∞

∆k = 0.

Proof. Suppose by way of contradiction that there exists a negative integer ρ
such that 0 < ∆0τ

ρ ≤ ∆k for all k ≥ 0. Combining equation (2.3) with Lemma 3.3
implies that for any k ≥ 0, rk takes its value among the integers of the finite set
{ρ, ρ+ 1, . . . , r+}.

Since xk+1 ∈ Mk, equation (2.4) assures that xk+1 = xk + ∆kDzk for some
zk ∈ Z |D|+ . Using equation (2.3) by substituting ∆k = ∆0τ

rk it follows that for any
integer N ≥ 1:

xN = x0 +
N−1∑
k=1

∆kDzk = x0 + ∆0D
N−1∑
k=1

τ rkzk = x0 +
pρ

qr+ ∆0D
N−1∑
k=1

prk−ρqr+−rkzk

where p and q are relatively prime integers satisfying τ = p
q . Since for any k the term

prk−ρqr+−rkzk appearing in this last sum is an integer, it follows that all iterates lie
on the translated integer lattice generated by x0 and the columns of pρ

qr+ ∆0D.
Therefore, since all iterates belong to a compact set, it follows that there are only

finitely many different iterates, and thus one of them must be visited infinitely many
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times. Therefore the rule presented in equation (2.2) is only applied finitely many
times, and the one in equation (2.1) is applied infinitely many times. This contradicts
the hypothesis that ∆0τ

ρ is a lower bound for the mesh size parameter.

3.3. Main convergence result. Since the mesh size parameter shrinks only
when a mesh local optimizer is detected, Proposition 3.4 guarantees that there are
infinitely many mesh local optimizers. The following definition specifies the subse-
quences we use.

Definition 3.5. A subsequence of the GPS iterates consisting of mesh local op-
timizers, {xk}k∈K (for some subset of indices K), is said to be a refining subsequence
if {∆k}k∈K converges to zero.

The following shows the existence of convergent refining subsequences. Notice
that if coarsening of the mesh was not allowed (i.e., w+ is set at 0 in equation (2.2)),
then every subsequence of mesh local optimizers would be a refining subsequence, and
so the next result would be trivial.

Theorem 3.6. There exists at least one convergent refining subsequence.
Proof. Let K ′′ be the set of indices of iterates that are mesh local optimizers.

Since the mesh is refined only at iterations when a local mesh optimizer is detected,
Proposition 3.4 guarantees that there exists a subset of indices K ′ ⊂ K ′′ for which
{∆k}k∈K ↓ 0. Assumption A3 ensures that there exists a subset of indices K ⊂ K ′

for which the subsequence of iterates {xk}k∈K converges.
We show below that the limit of any refining subsequence satisfies first order

optimality conditions appropriate to the local smoothness of f . It is shown in [1]
that even for a continuously differentiable f , the entire iteration sequence might not
converge. There may even be infinitely many limit points, and not all of these limit
points are stationary points.

Next is our basic, but key, result in which we apply Clarke’s [9] generalized direc-
tional derivatives in a very straightforward way to the pattern search analysis. The
results that follow specialize this result. Clarke’s derivative at x̂ in the direction d is
defined for locally Lipschitz functions. Loosely speaking, it is defined to be the limit
superior of the directional derivatives (in the direction d) of sequences converging to
x̂. The precise definition is given in the proof (see equation (3.1)).

Theorem 3.7. Under assumptions A1-A3, if x̂ is any limit of a refining sub-
sequence, and if d is any direction in D for which f at a poll step was evaluated
for infinitely many iterates in the subsequence, and if f is Lipschitz near x̂, then
the generalized directional derivative of f at x̂ in the direction d is nonnegative, i.e.,
f◦(x̂; d) ≥ 0.

Proof. Let {xk}k∈K be a refining subsequence and x̂ its limit point obtained as
in the statement of the Theorem. Since f is locally Lipschitz near x̂, we have from
Clarke [9] by definition that:

f◦(x̂; d) ≡ lim sup
y→x̂, t↓0

f(y + td)− f(y)
t

≥ lim sup
k∈K

f(xk + ∆kd)− f(xk)
∆k

.(3.1)

We need to know that the difference quotients are defined. First note that since f is
Lipschitz near x̂, it must be finite near x̂. Note also that since a main point of the
paper is to allow for extended valued functions and to justify the expedient of dealing
with constraints by declining to evaluate the function f at infeasible points, we made
the hypothesis that f was actually evaluated infinitely many times in the direction d.
Therefore, for k sufficiently large all the poll steps in the direction d, xk + ∆kd, are
feasible. If they had not been, then fΩ would have been infinite there and so f would
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not have been evaluated (recall that if x 6∈ Ω, then fΩ(x) is set at +∞ and f(x) is
not evaluated).

Thus, we have that infinitely many of the right hand quotients of (3.1) are defined,
and in fact they are the same as for fΩ. This allows us to conclude that all of them
must be nonnegative or else the corresponding poll step would have been successful in
identifying an improved mesh point (recall that refining subsequences are constructed
from mesh local optimizers).

In the unconstrained case, there will always be a positive spanning set of directions
that satisfy the hypotheses of the previous theorem. In the constrained case, there
may be no such d if D were defined in a way incompatible with the geometry of the
constraints (see the example in [23]). Thus in the next section, we will appeal to the
construction in [25] to ensure that a sufficiently rich set of directions is used for bound
or linear constraints. Again, we emphasize that GPS is a directional method, and the
choice of directions is crucial.

The following example illustrates Theorem 3.7 on a Lipschitz function. This
function looks like a convex function (quadratic in fact) that has been contaminated
by local noise that decreases in amplitude near the minimizer. This behavior is
common enough in practice to be the target class for implicit filtering algorithms [18].

Example 3.8. Consider the function f : < → < defined as f(x) = x2(2+sin(π
x )).

This function possesses infinitely many local optima near 0. One can show that f is
Lipschitz near 0, but it is not strictly differentiable there, and so certainly it is not
continuously differentiable. In fact, the generalized gradient satisfies ∂f(0) = [−π, π].

If the GPS algorithm with empty search steps, x0 = 1
3 , ∆0 = 1, D = {−1, 1},

∆k+1 = ∆k when an improved mesh point is found, and ∆k+1 = 1
2∆k when a mesh

local optimizer is detected, is applied to this problem, then the sequence of iterates
{xk} converges to 0, where f◦(0;±1) = π ≥ 0 as Theorem 3.7 guarantees. The proof
of this claim can be seen from Table 3.1.

Table 3.1
In four consecutive iterations, the iterates go from xk = 1

α
, ∆k = 3

α
where α is a positive

integer to xk+4 =
xk
4

, ∆k+4 =
∆k
4

.

k xk f(xk) ∆k f(xk −∆k) f(xk + ∆k) Iteration status

4i 1
α

2
α2

3
α

f( 1−3
α

) ≥ 4
α2 f( 1+3

α
) ≥ 16

α2 mesh local optimizer

4i + 1 1
α

2
α2

3
2α

f( 2−3
2α

) = 1
2α2 f( 2+3

2α
) ≥ 25

4α2 improved mesh point

4i + 2 −1
2α

1
2α2

3
2α

f(−1−3
2α

) ≥ 4
α2 f(−1+3

2α
) = 2

α2 mesh local optimizer

4i + 3 −1
2α

1
2α2

3
4α

f(−2−3
4α

) ≥ 25
16α2 f(−2+3

4α
) = 1

8α2 improved mesh point

4(i + 1) 1
4α

1
8α2

3
4α

Theorem 3.7 is the key to our analysis. The fact that its proof follows so directly
from Clarke’s definition of the generalized directional derivative is because unsuccess-
ful polling at mesh local optimizers belonging to convergent refining sequences pro-
vide exactly the nonnegative difference quotients that Clarke’s derivatives need since
xk → x̂ and ∆k ↓ 0. We believe that this illustrates an intimate relationship between
Clarke’s generalized directional derivatives and the directional algorithm GPS.

3.4. Corollaries for unconstrained optimization. Before we add the com-
plication of choosing directions for linear constraints, we give some easy corollaries of
Theorem 3.7 for the unconstrained case.
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In addition to the assumption that f is Lipschitz near x̂, we assume that the
generalized gradient of f at x̂ is a singleton. This is equivalent to assuming that
f is strictly differentiable at x̂, i.e., that there exists a Dsf(x̂) ∈ <n such that

lim
y→x̂,t↓0

f(y+tw)−f(y)
t = Dsf(x̂)Tw for all w ∈ <n (see [9], Proposition 2.2.1 or Propo-

sition 2.2.4). Since the generalized gradient is a singleton ∂f(x̂) = {Dsf(x̂)}, we use
the standard notation for the gradient ∇f(x̂) = Dsf(x̂).

Theorem 3.9. Under assumptions A1 and A3, let Ω = <n and x̂ be any limit of
a refining subsequence. If f is strictly differentiable at x̂, then ∇f(x̂) = 0.

Proof. Again from [9], if f is strictly differentiable at x̂, then for any direction
w 6= 0, f◦(x̂;w) = ∇f(x̂)Tw. Now let D̂ be any positive spanning set that is used
infinitely many times in the refining subsequence, there must be at least one since D
is finite. Then by Theorem 3.7, for each d ∈ D̂, 0 ≤ ∇f(x̂)T d. Thus, if we write w as
a nonnegative linear combination of the elements of D̂, then we see immediately that
∇f(x̂)Tw ≥ 0. But the same construction for −w shows that −∇f(x̂)Tw ≥ 0 and so
∇f(x̂) = 0.

The following example, based on a function taken from [19], illustrates the ap-
plicability of Theorem 3.9 by showing that any realization of GPS converges to the
global minimizer for this convex function, which is strictly differentiable at its min-
imizer, but not continuously differentiable. We are not aware of any other results
that apply to this example (the previous GPS analysis cannot be applied since they
assumed global continuous differentiability).

Example 3.10. Consider the convex function f : < → < defined as f(x) =∫ x

0
ϕ(u)du, where

ϕ(u) =
{

u if u ≤ 0
1

1+κ if κ+ 1 > 1
u ≥ κ ∈ Z+.

The function f is Lipschitz near x̂ = 0. It is shown in [19] that f has kinks at 1
κ with

∂f( 1
κ ) = [ 1

κ+1 ,
1
κ ] for κ = 1, 2, . . . The corollary of Proposition 2.2.4 in [9] guarantees

that f is not continuously differentiable near x̂. Furthermore, ∂f(0) reduces to the
singleton {0}, and the same Proposition ensures that f is strictly differentiable at x̂.

Applying Theorem 3.9 guarantees that any instance of any pattern search algo-
rithm with any set of initial parameters generates a subsequence of iterates that con-
verges to the global minimizer x̂ = 0 where ∇f(x̂) = 0, since the function is locally
Lipschitz everywhere, and 0 is the only point where Clarke’s generalized derivatives
are nonnegative in all directions of a positive spanning set.

We certainly are not claiming that the weaker smoothness conditions we use imply
that GPS methods always find a minimizer. This has been known to be false since
the inception of GPS methods. Simple convex counterexamples come from starting
at just the wrong point and choosing just the right ill-suited directions. This can
be seen by considering f(x) = |x1| + |x2| on <2 and starting with x0 = (1, 0)T with
D = {(1, 0)T , (−1, 1)T , (−1,−1)T }. The initial point x0 is a mesh local optimizer for
every ∆ > 0, and so the iteration never moves from x0 with an empty search step.

Unlike the corollaries below that require more smoothness, our theorem applies
to this simple example and describes exactly what happens; f is regular at x̂ and the
directional derivatives along the members of D are nonnegative.

The advantage of our analysis over the previous ones is that it can be applied to
a wider class of problems, and that it says what actually happens when the algorithm
is applied to them.
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The following two corollaries assume continuous differentiability. We have dis-
cussed how for our applications, this assumption unlikely to be satisfied, except per-
haps locally. We include these results only to tie our results here to earlier results
that use global continuous differtiabililty. The first corollary strengthens our result
in [2]. It shows that the limit of the gradient for any refining subsequence converges
to zero, even if the subsequence itself does not converge.

Corollary 3.11. Let Ω = <n and f be continuously differentiable on a neigh-
borhood of a compact set containing all the iterates {xk}. Then for any refining
subsequence {xk}k∈K , 0 = limk∈K ∇f(xk).

Proof. We have assumed A3, A2 is vacuous, and continuous differentiability
implies assumption A1. If x̂ is any limit point of a refining subsequence, then con-
tinuous differentiability implies strict differentiability at x̂ and so ∇f(x̂) = 0 from
Theorem 3.9. Since the continuous image of a compact set is compact, the entire se-
quence of gradients of any refining subsequence is in a compact set. Thus, there must
be a subsequence {xk}k∈K′ of the refining subsequence for which limk∈K′ ∇f(xk) =
lim supk∇f(xk). But then {xk}k∈K′ has a convergent subsequence, and its limit
point has a zero gradient because it is a limit point of a refining subsequence, and so
0 = lim supk∇f(xk).

A consequence of the previous result is that under the assumption that f is
continuously differentiable, any limit point of a refining sequence has a zero gradient.

The fact that under the assumption of continuous differentiability the limit of the
gradients of any refining subsequence is zero was pointed out in [14]. Earlier, under
strong restrictions on the algorithm, it was shown in [28] that 0 = limk∇f(xk). One
of those restrictions is that lim ∆k = 0, which we proved above is already is enough
to say that the limit of the gradients at the mesh local optimizers is zero since then
they are a refining subsequence. Thus, we will not discuss the restrictions needed for
the stronger result, since they are too constraining for our class of problems.

The next corollary (really a corollary of Corollary 3.11) is Torczon’s result from
[28], strengthened by the same result from [14].

Corollary 3.12. Let Ω = <n and f be continuously differentiable on a neigh-
borhood of a compact set containing all the iterates {xk}, then some limit point x̂ of
{xk} satisfies ∇f(x̂) = 0. The limit of the gradients for any refining subsequence is
zero.

Proof. Every refining subsequence is a subsequence of {xk}.
In summary, if assumptions A1 and A3 are satisfied, then the algorithm guaran-

tees the following hierarchy of convergence behavior.
(i) If f is lower semicontinuous at any limit point x̄ of the GPS iteration sequence,

then Theorem 3.1 says that f(x̄) ≤ limk f(xk).
(ii) Every limit point of the iteration sequence at which f is continuous has the

same function value limk f(xk) whether or not it is a stationary point. Thus,
if GPS produces a nonstationary limit point [1], which must necessarily be
a limit point of improved mesh points (formerly called successful iterations),
then there is a descent direction from that limit point, and so, despite finding
a stationary point, the directions were poorly suited to the problem.

(iii) There is at least one x̂ that is a limit point of a refining subsequence i.e., x̂
is a limit point of a sequence of local optimizers on meshes that get infinitely
fine. If the function f is lower semicontinuous but not even Lipschitz near x̂,
then nothing additional to the above is claimed about optimality conditions
satisfied by x̂.
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(iv) If f is Lipschitz near x̂, then Theorem 3.7 holds and Clarke’s generalized
derivatives satisfy f◦(x̂; d) ≥ 0 for some directions d ∈ D that form a positive
spanning set. In addition, f(x̂) = limk f(xk) since f is continuous at x̂.

(v) If f is regular2 at x̂, then the directional derivatives satisfy f ′(x̂; d) ≥ 0 for
some directions d ∈ D, a positive spanning set, and f(x̂) = limk f(xk).

(vi) If f is strictly differentiable at x̂, then Theorem 3.9 holds and ∇f(x̂) = 0,
but its function value limk f(xk) is the same as at any other limit point of
the entire GPS iteration sequence at which f is continuous (by (ii)).

(vii) If f is globally continuously differentiable (as assumed in earlier analyses), this
means that every limit point of a refining subsequence is a stationary point
as in item(vi) and that the gradients of a refining subsequence converge to
zero, whether or not the subsequence converges. However, as was shown in
[1], there still there can be limit points of the entire GPS iteration sequence
that are not stationary points. Though such points have the same function
value as the stationary points, there is a descent direction from such points
that lead to lower function values.

3.5. Linearly constrained convergence results. In this section, we will con-
sider only the case where Ω is defined through a finite set of linear constraints. In
order to prove the relevant optimality results, we will have to assume that D, even
though finite, is rich enough to generate poll sets that conform to the geometry of the
boundary of Ω. Furthermore, to apply our proof technique, we must ensure that the
spanning sets that reflect this geometry get used infinitely many times as we converge
to a point on the boundary. Lewis and Torczon [25] show how to use standard linear
algebra tools to generate the requisite positive spanning matrices Dk ⊆ D. This relies
on assumption A2, the rationality of the constraint matrix A.

We pause to remind the reader that for x ∈ Ω, the tangent cone to Ω at x is
TΩ(x) = cl{µ(w−x) : µ ≥ 0, w ∈ Ω}. The normal cone to Ω at x is NΩ(x) and can be
written as the polar of the tangent cone: NΩ(x) = {v ∈ <n : ∀w ∈ TΩ(x), vTw ≤ 0}.
It is the nonnegative span of all the outwardly pointing constraint normals at x.

It would add unnecessary length to this paper to rewrite the construction given
by Lewis and Torczon [25] for D and the choice rule for Dk from D at each iteration
(their notation for Dk is Γk). The construction is presented there quite succinctly
in Section 8 of [25] where they consider implementation issues, including difficulties
inherent to degenerate constraints. We will use the following abstracted version of
their direction choice.

Definition 3.13. A rule for selecting the positive spanning sets Dk = D(k, xk) ⊆
D conforms to Ω for some ε > 0, if at each iteration k and for each y in the boundary
of Ω for which ‖y−xk‖ < ε, TΩ(y) is generated by a nonnegative linear combinations
of the columns of a subset Dy

k of Dk.
With this definition, we are ready for our next convergence result. Note that if

xk ∈ Ω is not near the boundary, then Dk need only provide a positive spanning set
for <n, which is completely sensible. However, in our experience, it is best not to take
ε too small so that the iterates crowd up against the boundary of Ω and the mesh
size becomes small. This is mitigated somewhat by allowing variable coarsening of
the mesh as in equation (2.2).

Theorem 3.14. Under assumptions A1-A3, if f is strictly differentiable at a limit

2The function f is said to be regular at x if for all v, the one-sided directional derivative exists
and coincides with f◦(x; v) (see Clarke [9]).
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point x̂ of a refining subsequence, and if the rule for selecting the positive spanning
sets Dk = D(k, xk) ⊆ D conforms to Ω for an ε > 0, then ∇f(x̂)Tw ≥ 0 for all
w ∈ TΩ(x̂), and −∇f(x̂) ∈ NΩ(x̂). Thus, x̂ is a KKT point.

Proof. If x̂ is interior to Ω, then the result is just Theorem 3.9, and so we can
proceed directly to the case where x̂ is on the boundary of Ω.

Suppose that the rule for selecting Dk ⊆ D conforms to Ω for some fixed ε > 0,
and that there are finitely many linear constraints, then Dx̂

k spans TΩ(x̂) for large
k ∈ K. It follows that there can only be finitely many different such sets Dx̂

k for
k ∈ K. Let Dx̂ ⊆ D be one of them that occur infinitely many times.

Theorem 3.7 implies that ∇f(x̂)T d ≥ 0 for every column d of Dx̂. But since
every w ∈ TΩ(x̂) is a nonnegative linear combination of the columns of Dx̂, then
∇f(x̂)Tw ≥ 0. To complete the proof, we multiply both sides by −1 and conclude
that −∇f(x̂) is in NΩ(x̂).

Remark 3.15. If f were only assumed to be Lipschitz near x̂, then we could still
conclude as in Theorem 3.7, that f◦(x̂; d) ≥ 0 for every column d of Dx̂.

The following corollary is Lewis and Torczon’s result from [25] which relies on a
stronger differentiability assumption.

Corollary 3.16. If A2 and A3 hold and f is continuously differentiable on
a neighborhood of a compact set containing all the iterates {xk}, and if the rule for
selecting the positive spanning sets Dk = D(k, xk) ⊆ D conforms to Ω for an ε > 0,
then there exists a limit point x̂ of {xk} such that ∇f(x̂)Tw ≥ 0 for all w ∈ TΩ(x̂),
and −∇f(x̂) ∈ NΩ(x̂). Thus, x̂ is a KKT point.

Proof. The proof follows from Theorem 3.14 since every refining subsequence is a
subsequence of {xk} and continuous differentiability implies strict differentiability.

4. Concluding remarks. This paper puts together ways to choose the direc-
tions and results on properties of the mesh by Lewis and Torczon, some observations
of ours about what is needed to obtain convergence of those algorithms (such as refin-
ing subsequences), and elements of nonsmooth analysis set forth by Clarke. Clarke’s
analysis is perfectly suited to expose the first order optimality conditions at limit
points of certain subsequences of the GPS iterates under weakened assumptions that
correspond to some real problems for which GPS is quite effective.

We believe that our analysis helps confirm a remark of [25] that GPS methods
for general constraints will not be based on the appealingly simple barrier strategy of
placing a high function value on infeasible trial points. In [3], we suggest and analyze
a GPS algorithm for general constraints based not on a single objective, but on the
interesting new filter approach of Fletcher et al. [15], [16] and [17]. In [26], Lewis and
Torczon give a successive augmented Lagrangian pattern search approach together
with its convergence analysis.

Finally, we wish to acknowledge a helpful referee and Major Mark Abramson
USAF for many insightful comments that improved the presentation.
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